Continuity properties of law-invariant (quasi-)convex risk functions on L ∞

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Continuity properties of law - invariant ( quasi - ) convex risk functions on L ∞

We study continuity properties of law-invariant (quasi-)convex functions f : L∞( ,F,P) → (−∞,∞] over a non-atomic probability space ( ,F,P). This is a supplementary note to Jouini et al. (Adv Math Econ 9:49–71, 2006).

متن کامل

Subgradients of Law-Invariant Convex Risk Measures on L

We introduce a generalised subgradient for law-invariant closed convex risk measures on L and establish its relationship with optimal risk allocations and equilibria. Our main result gives sufficient conditions ensuring a non-empty generalised subgradient.

متن کامل

Law invariant risk measures on L∞(Rd)

Kusuoka (2001) has obtained explicit representation theorems for comonotone risk measures and, more generally, for law invariant risk measures. These theorems pertain, like most of the previous literature, to the case of scalar-valued risks. Jouini-Meddeb-Touzi (2004) and Burgert-Rüschendorf (2006) extended the notion of risk measures to the vector-valued case. Recently Ekeland-Galichon-Henry (...

متن کامل

Subgradients of Law-Invariant Convex Risk Measures on L1∗

We introduce a generalised subgradient for law-invariant closed convex risk measures on L and establish its relationship with optimal risk allocations and equilibria. Our main result gives sufficient conditions ensuring a non-empty generalised subgradient.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematics and Financial Economics

سال: 2010

ISSN: 1862-9679,1862-9660

DOI: 10.1007/s11579-010-0026-x